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Abstract

I study oligopolistic dynamic price competition between micromobility platforms
in Washington, D.C. The model presents a computational challenge due to both the
large policy space—optimizing prices across hundreds of origin-destination pairs for
eight competing firms—and the large state space of vehicle inventories across different
locations. I overcome these computational challenges by performing gradient descent
in a simulated dynamic model of the market, an approach proven to be successful in
high-dimensional settings by the deep reinforcement learning literature. Using this
framework, I compare the current regulation-constrained regime of spatially uniform
price competition with counterfactual scenarios with competition on fully flexible prices
for each origin-destination pair and time of day, focusing on the distributional impacts
of flexible pricing. Matching the heterogenous welfare impacts to trip survey data, I
find that welfare gains and losses are evenly distributed across travelers of different
incomes, allaying policymakers’ concerns of equitable access to transportation under
destination pricing.
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1 Introduction

Price controls are generally agreed to reduce overall economic welfare as they obscure the true
economic costs and benefits of an individual’s decisions (Hayek, 1945). Nevertheless, they
are often used as a policy tool to address concerns for various kinds of fairness. Controls
on the overall level of prices are generally meant to correct for excessive market power,
as is the case with the price gouging laws that were regularly invoked in the wake of the
COVID-19 pandemic, or to curb runaway wartime inflation (Galbraith, 1980; Taussig, 1919).
Controls on the flexibility of prices (over time, or over consumer characteristics) can instead
serve as a form of cross-subsidization between different groups of consumers.1 For example,
the Affordable Care Act’s ban on price discrimination against individuals with pre-existing
conditions effectively subsidizes less healthy individuals. This type of redistributive policy
can be justified when imperfect information hinders non-distortionary transfers in the spirit
of the Second Theorem of Welfare Economics (Arrow, 1951). In such a second-best scenario,
price controls are an attractive policy tool insofar as they target redistribution effectively
and do so at a minimal cost to economic efficiency.2

This paper investigates one such price control policy in the context of dockless shared vehicle
platforms in Washington D.C. The aims of the paper are to determine: (i) whether the
redistributive effects of transportation price controls are progressive in terms of incomes and
(ii) the overall cost of the redistribution in terms of foregone consumer surplus and industry
profits. In order to credibly do so, this paper introduces a novel simulation-based stochastic
gradient descent pricing algorithm derived from the reinforcement learning literature. This
allows me to compute highly flexible counterfactual pricing equilibria with hundreds of origin-
and destination-specific prices per firm while accounting for the stochastic nature of demand
and complex capacity constraints. This method can also flexibly incorporate restrictions on
the price schedule by specifying a differentiable functional form, as the gradient can simply
be passed through via the chain-rule.3

In the context of transportation, price controls have a long history stretching back to the
Interstate Commerce Act of 1887 which regulated prices in the railroad industry and es-

1Controls on pricing flexibility thus cover both third-degree price discrimination (on the basis of different
elasticities), and firms setting prices differently according to differences in the marginal cost of serving
different consumers.

2Since policies limiting price discimination will lead to higher prices for some consumers and lower prices
for others, they can be considered under the umbrella of second-best redistributive taxation, as considered
by Mirrlees (1971). See Boadway and Keen (2000) for a comprehensive review of this subject.

3The vehicles are electric scooters or bicycles. The term ‘dockless’ contrasts these platforms with station-
based bikeshare systems.
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tablished the first federal regulatory agency. A notable feature of the regulations was that
short-haul rates had to match longer haul rates that traveled the same path. Though the
political motivation of the regulation was debated for over a century, the regulation de facto
subsidized firms with demand for short-haul shipping, which were mostly in the agricultural
sector (Gilligan, Marshall, and Weingast, 1990). In the urban transportation context studied
in this paper, many public transit systems do not price on the basis of marginal costs, thus
effectively implementing a type of price control. In major cities such as New York and Paris,
among others, subway and bus trips are all priced the same, regardless of trip length, origin,
or destination. Much like the railroad price controls, this has the effect of subsidizing travel
to farther peripheral areas, mimicking direct policies such as tax-deductible commuter bene-
fits. A possible rationale for this type of redistribution is that lower-income individuals sort
themselves into more distant, cheaper neighborhoods. Though plausible in simple theoretical
models, the real-world sorting patterns of a city are complex and can vary according to the
transportation technologies available at the time of a city’s development (Anas, Arnott, and
Small, 1998). The desirability of redistribution from the central to the peripheral areas of a
city is thus ambiguous.

The question of transportation price controls has appeared in renewed form with a tide
of privately owned online transportation platforms (such as Uber and Lyft) which have
shown the potential for more sophisticated pricing systems to deliver large gains in economic
efficiency (see for example, Castillo, 2022 on surge pricing). However, the complex nature
of these pricing systems has raised questions on their redistributive effects.4 In response,
policymakers have proposed and sometimes implemented price controls, despite lacking a
clear picture on what kind of redistribution such a policy would actually effect, as was the
case in the market for shared vehicle platforms in Washington, D.C.

To study these price controls, I first collect real-time vehicle location data from the Appli-
cation Programming Interfaces (APIs) of all active firms in the market, which were made
public by a regulatory mandate.5 The APIs were queried at a minute-level frequency in
the period of December 2019 to February 2020, preceding the disruptions of the COVID-19
pandemic. The data for each firm consists of real-time longitude and latitude information
on available vehicles. Some firms include a persistent identifier for each vehicle, allowing me
to track their movement and construct precise trip information.

4See Pandey and Caliskan (2021) for an example of price disparities in ridehail across racial and socio-
economic divides.

5Like an ordinary website, APIs can be accessed via a URL but rather than display a human-readable
page, they serve data that is meant to be read by an application.
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I build a rich demand model featuring stochastic arrivals of consumers who then choose
among the vehicles of the various firms in the market, taking into account their current
prices and the expected distance they would need to walk to reach a firm’s nearest vehicle,
which is directly informed by the geolocation data. Unlike other recent work in urban
transportation, consumers in my model do not face search frictions. This modeling choice is
motivated by the ease of finding vehicles through each firm’s application. The model flexibly
estimates the values of trips for each origin-destination pair among a discrete set of 22 areas
and additionally distinguishes between 4 periods in the day, to account for time-varying
demand patterns such as commuting.

Estimation of the model leverages the rigidity of the two-part tariff used by all firms in the
status quo to credibly pin down consumers’ price elasticities without the need for an instru-
ment. The estimator makes full use of the richness of the data, using both re-constructed
information on trips for certain firms and direct data on the evolution of vehicle availabilities
for other firms.

My estimates imply higher price elasticities of demand than some other recent works studying
ridehail platforms in the United States, such as Rosaia (2020) and Cohen et al. (2016), but
are lower than the elasticities in Buchholz et al. (2020), who study an auction-based ridehail
platform. I also find a high disutility of walking to the nearest vehicle, which, when converted
to a value of time, is in line with the estimates of Rosaia (2020). The high price elasticities
and the importance of vehicle density both increase the value of more sophisticated prices
in this market, the former by increasing the benefit of third degree price discrimination, and
the latter by increasing the value of balancing vehicle supply across locations.

In order to assess the effects of the regulation, I develop a novel stochastic gradient ascent
algorithm derived from policy gradient methods used in the reinforcement learning literature,
which can be used to solve for pricing equilibria under various restrictions on the pricing
schedule.6 Other recent work in economics has focused on Q-learning algorithms from this
literature, but this generally requires iterating action-specific values, using a grid to ap-
proximate a continuous action space. When the action space is high-dimensional (such as
with a complex price schedule), such methods quickly become computationally intractable.
The gradient-based method proposed in this paper instead iterates on the optimal prices
directly, allowing it to solve for an equilibrium involving hundreds of different prices for each
of the eight firms in the market. It can also naturally accommodate a variety of parametric
restrictions on the price schedule by simply applying the chain rule.

6See Sutton and Barto, 2018 for an overview of policy gradient reinforcement learning algorithms.
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The counterfactual exercise consists of comparing simulated equilibria under optimal two-
part tariffs (which are compliant with the price control regulations) against equilibria with
fully flexible prices, which can vary by trip origin, destination, time of day, and vehicle
availability. I find that allowing fully flexible prices yields a substantial increase of 34% in
firm profits, or $6200 per day, but that the increase in consumer surplus is more than double
the profit increase ($14711 per day, equivalent to 80% of firm profits in the two-part tariff
equilibrium), implying that the price control policy imposes a heavy cost on market efficiency.
Furthermore, I find that the redistributive effects of the policy are not progressive, but rather
inverse U-shaped, such that they mainly benefit the middle of the income distribution. This
occurs because the price controls most directly benefit riders taking trips away from the
city center and the income distribution varies non-monotonically with distance from the city
center. These results thus cast doubt on the effectiveness of these price controls in promoting
access to transportation for lower income individuals.

1.1 Related Work

This paper contributes to a recent literature on the efficiency of different pricing schemes in
transportation markets, starting with Buchholz (2021), who demonstrated that the simple
tariff structure used by taxicabs in New York produces a significant spatial misallocation
of capacity. In counterfactual simulations, more sophisticated tariff structures which bet-
ter reflected drivers’ opportunity costs generated substantial efficiency gains comparable to
eliminating matching frictions entirely. Following a similar modeling framework, Brancac-
cio, Kalouptsidi, Papageorgiou, and Rosaia (2020) instead focus on frictions attributable to
the search and bargaining process in decentralized markets, suggesting a role for a central-
ized platform to improve match efficiency, or for taxes to correct the mispricing that occurs
through bargaining. Rosaia (2020) examines the ridehail market in New York City, focusing
on the equilibrium between the two major platforms and the impact of a congestion tariff in
relieving the overconcentration of drivers in the busy downtown area.

This work contributes to this literature by explicitly considering the policymaker’s redis-
tributive motive for constraining firms to inefficient prices. The empirical setting also differs
significantly as it focuses on shared vehicle platforms rather than two-sided markets of drivers
and riders. The importance of search frictions is thus vastly diminished, as each platform
simply places a fleet of homogenous vehicles at customers’ disposal, which can be easily
located on a map. On the other hand, since vehicles are rarely relocated by anyone but
the customers themselves, the degree of spatial misallocation of vehicles caused by price
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distortions is aggravated. The modeling framework in this work can thus be extended to
many other transportation markets exhibiting this feature, such as shipping containers7,
truck trailers8, and one-way car rentals.

It is also worth noting that my modeling framework and computational algorithm used in
this paper are flexible enough to allow for a form of surge pricing (by allowing a firm’s prices
to be conditioned on its current quantity of available vehicles in an area) as in Castillo (2022),
but my counterfactual simulations suggest its role is more limited in the empirical context
studied here, which can be explained by two major differences. Firstly, the supply of vehicles
relative to the quantity of demand is much larger than in rideshare systems, so the stock
of vehicles at any one location is depleted more slowly. Secondly, the vehicles themselves
cannot respond to price incentives in the same way that rideshare drivers can, so the effects
of surge pricing will only take place on the demand side.

This work is also connected to the large literature comparing classical third degree price dis-
crimination with uniform pricing. Theoretical results on price discrimination in oligopolistic
contexts, such as by Holmes (1989) and Corts (1998), are ambiguous, as they depend on
how competition is intensified or relaxed in the resulting submarkets. Despite this theoret-
ical ambiguity, few papers have examined this question empirically, with a recent example
being Adams and Williams (2019) in a retail context. They find an overall benefit to con-
sumers for finer pricing, except for those in rural markets where stores are further apart
and competition is weaker. This paper addresses the question of limiting pricing flexibility
in a transportation context, where any such controls not only limit third-degree price dis-
crimination, but also any price variation which reflects differences in shadow costs. I find
qualitatively similar results, showing a large increase in consumer welfare from more sophis-
ticated pricing, with the only consumers harmed being those in the more rural areas with
less vehicles available. In the context of a regulated monopoly, Miravete, Seim, and Thurk
(2020) find that the uniformity of alcohol taxes in Pennsylvania effectively acts as a form of
progressive redistribution to lower income and less educated individuals. This paper arrives
at the opposite conclusion in the urban transportation context, showing that uniformity of
transportation prices are not clearly progressive but instead subsidize more distant areas,

7Lu, C.-Y. Lee, and L.-H. Lee (2020) study the joint pricing and relocation and pricing problem for
containers, but are restrict their setting to two locations and abstract away from the stochastic nature of
the problem. In contrast, the reinforcement learning approach in this paper can deal with the larger state
spaces that come with many locations and a stochastic problem.

8A growing segment of the trucking market operates on the “power only” model, in which a driver picks
up an already loaded trailer provided by a third-party. The firms providing such trailers must constantly
rebalance their fleets, preferably through appropriate prices. See: https://convoy.com/blog/drop-and-
hook-combinatorial-optimization/
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which are not always higher or lower income than the central part of a city. Finally, several
studies investigate the puzzling uniformity of pricing schemes found in many industries, such
as DellaVigna and Gentzkow (2019), Cho and Rust (2010), Shiller and Waldfogel (2011),
and Orbach and Einav (2007). In general, these papers point to constraints on manage-
rial resources as an explanation for the price uniformity. In contrast, this paper focuses on
government mandated price uniformity, and thus bears more direct policy relevance.

Finally, this work also contributes to the understanding of modern reinforcement-learning
algorithms in economic research. On the methodological front, such algorithms have recently
shown success in dynamic problems with a very large state or action space (Mnih et al.,
2015; Silver et al., 2016), where the methods conventionally used in economics would face
a curse of dimensionality (see Igami, 2020 and Iskhakov, Rust, and Schjerning, 2020 for a
comparison of the approaches). Two major contributors to these successes are the use of
simulations to iterate on value and policy functions, and the use of deep neural networks as
flexible function approximators. Iteration by simulation has most prominently been used in
economics by Pakes and McGuire (2001), but has seen little use in other applied research.
Neural networks have recently been used to solve large dynamic macroeconomic models
(Azinovic, Gaegauf, and Scheidegger, 2022; Kahou, Fernández-Villaverde, Perla, and Sood,
2021). This paper is the first to propose a tractable framework to apply these techniques
to high-dimensional pricing problems. To deal with the continuous action space in such
problems, it adapts gradient based methods to iterate on the state-dependent price policy
directly via stochastic gradient descent, allowing it to solve for nearly 4,000 equilibrium prices
(for each origin, destination, and firm combination) as a function of a high-dimensional state
variable. Such a computation would be infeasible with a grid-based approach, as used by
Buchholz (2021), as the number of grid points to evaluate would rapidly explode with the
number of prices.9 The framework proposed here can thus significantly expand the scope of
pricing problems that can be studied empirically, without needing to impose restrictions on
the number of firms considered or the level of sophistication of their pricing.

Reinforcement learning algorithms have also generated theoretical interest for their poten-
tial to reach a supra-competitive pricing equilibrium (Calvano, Calzolari, Denicolo, and Pas-
torello, 2020). Asker, Fershtman, and Pakes (2023) show that equilibrium behavior depends
crucially on the details of how the reinforcement learnings update their prices. However,
this literature has only considered Q-learning algorithms, which rely on a discretization of
the space of prices, and can mistakenly converge if the algorithm has had insufficient exper-

9For a system of K prices and N possible values for each prices, one would have to evaluate a grid of size
KN .
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imentation with certain prices. This is again a problem when considering a large schedule
of prices, since the algorithm would need to iterate over a large grid. In contrast, the con-
tinuous gradient based method presented in this paper iterates on prices directly and thus
scales linearly in the number of prices, and its use of stochastic gradient descent naturally
seeks to satisfy the first order conditions of a Walrasian equilibrium are fulfilled.10 This
paper thus further reinforces the notion that not all reinforcement learning algorithms are
likely to lead to anti-competitive outcomes. As demonstrated in this paper, an alternative
rationale for firms’ adoption of such algorithms is their computational advantage in solving
for sophisticated price schedules.

The remainder of the work is structured as follows. Section 2 introduces the pricing algorithm
used to compute the high-dimensional counterfactual price equilibria. Section 3 introduces
the empirical setting and the data used for the analysis. Section 4 explains the economic
model. Section 5 details the estimation methodology and resulting estimates. Section 6
introduces the stochastic gradient ascent algorithm used to compute the counterfactual prices
and analyzes the counterfactual results. Section 7 concludes. The accompanying online
appendix provides additional details on the implementation of the algorithm in Section A.3.

2 Pricing Algorithm

The general application for the pricing algorithm is a multi-product firm that faces stochastic
demand and capacity constraints which can bind across product categories. This describes a
wide-variety of industries, such as airlines, hotels, and car rentals, in addition to this paper’s
empirical application to micromobility platforms. For example, two separate flight itineraries
may share capacity on a common leg, and overlapping hotel stays can share capacity on
common nights. For car rentals and micromobility platforms, the same vehicle could be
used for trips to different destinations. In general, these shared capacity constraints create
additional linkages in the optimal pricing problem across products, in addition to substitution
effects. The consequences are two-fold: the global pricing problem cannot easily be separated
into lower-dimensional problems, and the capacity constraints and stochastic demand create
complicated non-linearities in the objective function. Exact solutions based on traditional
dynamic programming methods are thus infeasible, as solving over the whole state-space
will introduce a curse of dimensionality, and a steady-state approximation will not properly

10Since the conditions for the invertibility of a demand system also guarantee the uniqueness of the
Walrasian equilibrium (Berry, Gandhi, and Haile, 2013), the first order conditions will be sufficient in most
economic models under empirical study.
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capture the effects of the sometimes binding capacity constraints.

To solve these issues, I introduce a simulation-based stochastic gradient descent algorithm.
The use of simulation flexibly captures the interaction of capacity constraints and stochastic
demand, while the use of gradients significantly improves the rate of convergence in high-
dimensional problems.

We begin with the generalized firm pricing problem for a firm f :

max
pf (Qf ,h)

∞∑
t=0

βtEqf ,h|pf

[
1[ht ̸= h̄]

∑
ℓ∈L

∑
m∈M

(pℓ,m,f (Qf,t, ht)− cℓ,m,f )qℓ,m,f,t

]
(1)

• Qf,t = (Qℓ,f,t)ℓ∈L is a vector of firm capacities of different types ℓ at period t.

• qℓ,m,f,t are realizations of demand at period t. Capacity is shared within demand of
types ℓ so that realized demand obeys

∑
m∈M qℓ,m,f,t ≤ Qℓ,f,t. The realized demand

vector is drawn from a distribution g(.|pf , Qf , h)

• ht is a state variable affecting demand and evolving stochastically. We assume there
is an absorbing state h̄ in which there is zero demand, effectively serving as a terminal
condition for the pricing problem.

• pf (Qf , h) = (pℓ,m,f (Qf , h))ℓ∈L,m∈M is the vector of firm prices contingent on the current
state.

Let J(pf ) denote the objective function of the problem. A brute force approach to solving this
problem via gradient ascent is to simulate the expectation to a high-degree of precision and
take the gradient of this expectation with respect to pi at each iteration of the algorithm.
Because the expectation is over many long demand paths, the variance is high, requiring
many draws to achieve high precision and hence an unfeasibly high amount of computation
time.

Fortunately, the problem fits neately into the framework of policy gradient algorithms, as
proposed by Sutton, McAllester, Singh, and Mansour (1999). A key feature of this approach
is the use of stochastic gradient ascent, which can use a noisy approximation of the gradient
at each iteration, so long as this gradient takes the form of an expectation. This noisy ap-
proximation can use signficantly less simulation draws, and hence, computational resources,
than a precise gradient would. Using a simplified notation, it is straightforward to derive the
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gradient in expectation form. In the following, let τ = (qt)
∞
t=0 be a trajectory of realized

demands, with associated distribution g̃(τ |p):

∇pJ(p) = ∇pEτ

[ ∞∑
t=0

βt(p(Qt)− c)′qt

]
= ∇p

∑
τ

g̃(τ |p)
[ ∞∑

t=0

βt(p(Qt)− c)′qt

]
=

∑
τ

g̃(τ |p)
[ ∞∑

t=0

βtqt

]
+
∑
τ

∇pg̃(τ |p)
[ ∞∑

t=0

βt(p(Qt)− c)′qt

]
=

∑
τ

g̃(τ |p)
[ ∞∑

t=0

βtqt

]
+
∑
τ

g̃(τ |p)∇p log g̃(τ |p)
[ ∞∑

t=0

βt(p(Qt)− c)′qt

]
=

∑
τ

g̃(τ |p)
[ ∞∑

t=0

βtqt +∇p log g̃(τ |p)
( ∞∑

t=0

βt(p(Qt)− c)′qt
)]

= Eτ

[ ∞∑
t=0

βtqt +∇p log g̃(τ |p)
( ∞∑

t=0

βt(p(Qt)− c)′qt
)]

Two steps in the above derivation merit additional explanation. Firstly, the expectation
is converted into a sum weighted by the probability of the demand realizations g̃(τ |p).
Second, the key to making the gradient into an expectation is the identity ∇pg̃(τ |p) =

g̃(τ |p)∇p log g̃(τ |p).

We can further simplify this expression by decomposing the probability of a trajectory into
a product of conditional probabilities:

∇p log g̃(τ |p) = ∇p log
( Conditional demand︷ ︸︸ ︷

g(q0|p,Q0)

Capacity transition︷ ︸︸ ︷
t(Q1|q0, Q0) g(q1|p, q1)t(Q2|q1, Q1) . . .

)
= ∇p log

( ∞∏
t=0

g(qt|p,Qt)t(Qt+1|qt, Qt)
)

=
∑
t=0

∇p log g(qt|p,Qt) +∇p log t(Qt+1|qt, Qt)︸ ︷︷ ︸
=0

=
∑
t=0

∇p log g(qt|p,Qt)

When approximating this expectation via simulation, it is not necessary to simulate a tra-
jectory of infinite length, due to the absorbing state h̄ (see Section 4). Let s index each
simulation, with S total simulation draws and denote Ts as the final period of each simula-
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tion, when hTs = h̄. We then obtain the simulated approximation to the expected gradient:

∇̃pJ(p) =
1

S

S∑
s=1

[ Ts∑
t=0

(
βtqs,t +∇p log g(qs,t|p,Qt)

Ts∑
t=0

((p− c)′qs,t)
)]

(2)

The next issue is that pf (Qf , h) is a function, which is equal in size to the Cartesian product
of the state-space and the price space (both of which are high-dimensional), and thus is not
computationally feasible to optimize on directly. We can thus use a simplified parameteric
pricing function pθf (Qf , h) over which the optimization will be performed. This parametric
form will be used to define the second equilibrium concept in the model in Section 4.3. In
that case, the gradient takes the form:

∇̃θJ(θ) =
1

S

S∑
s=1

[ Ts∑
t=0

(
βt(∇θpθ)qs,t + (∇θpθ)∇p log g(qs,t|p,Q)

Ts∑
t=0

((pθ − c)′qs,t)
)]

(3)

where, the gradient w.r.t. p is transformed into a gradient w.r.t. θ via the chain rule.

Finally, the stochastic gradient ascent algorithm works by repeatedly updating the parame-
ters as follows:

θk+1
f = θkf + αk∇̃θJ(θ) (4)

There are additional performance improvements and implementation details that can be
found in Section A.3 of the online appendix, which include the specification of the training
parameters: the number of simulation draws per iteration S, and the learning rate αk. To
better understand the behavior of the algorithm under different training parameters, the
next section demonstrates the implementation the algorithm in a simple linear differentiated
Bertrand setting, where the algorithm’s results can be compared to the analytical solution.

2.1 Simplified benchmark application

To better understand the properties of the reinforcement learning algorithm, this section
demonstrates how the algorithm performs in a highly simplified setting of two firms compet-
ing under linear differentiated Bertrand demand without capacity constraints. While this
algorithm would never be used in such a simple setting in practice, it provides a convenient
benchmark due to its easily computed analytical solution.
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The demand for each firm i ∈ {1, 2}, j ̸= i is:

qi(pi, pj) = Ai − aipi + bipj

Since the algorithm relies on demand being stochastic, we will assume that the demand each
firm faces each period is scaled by the total market size Mt, which is drawn each period from
a Poisson distribution with rate λ. We thus have:

qf,t(pi, pj) = Mtqi(pi, pj) ∼ Poisson(λqi(pi, pj))

Each firm solves the following maximization problem:

max
pi

E[(pi − ci)qi,t(pi, pj)] ⇒ max
pi

(pi − ci)λqi(pi, pj)

The simplified maximization problem does not depend on the stochastic nature of demand,
and can thus be reduced to the well-known Nash-Bertrand equilibrium, characterized by the
following first-order conditions:

Ai − 2aipi + bipj + aici = 0

2p∗i =
1
ai
(Ai + bipj) + ci

The equilibrium is the solution to the resulting system of linear equations, providing an easily
computable baseline with which to compare the results obtained from the reinforcement
learning algorithm. Next, we can derive the stochastic gradient for this simplified model.

We return to the firm’s problem, this time decomposing the expectation into a sum:

max
pi

E[(pi − ci)qi,t(pi, pj,k)]

max
pi

∑
qi∈N

g(qi|pi, pj,k)[(pi − ci)qi]︸ ︷︷ ︸
≡J(pi)

Where g(qi|pi, pj,k) is the probability mass function of a Poisson distribution with rate
λqi(pi, pj). Importantly, the derivative of this PMF with respect to the firm prices is ana-
lytically tractable.
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As before, we can define the stochastic gradient:

∇piJ(pi) = ∇p

∑
qi∈N

g(qi|pi, pj,k)[(pi − ci)qi]

=
∑
qi∈N

g(qi|pi, pj,k)qi +
∑
qi∈N

∇pg(qi|pi, pj,k)[(pi − ci)qi]

=
∑
qi∈N

g(qi|pi, pj,k)qi +
∑
qi∈N

g(qi|pi, pj,k)∇p log g(qi|pi, pj,k)[(pi − ci)qi]

=
∑
qi∈N

g(qi|pi, pj,k)
[
qi +∇p log g(qi|pi, pj,k)[(pi − ci)qi]

]
The stochastic gradient then involves taking S draws of q given the current pi,k and pj,k and
forming:

∇̃pi,kJ(pi,k) =
1

S

S∑
s=1

[
qsi +∇pi,k log g(q

s
i |pi,k, pj,k)[(pi,k − ci)q

s
i ]
]

The iteration then proceeds as follows:

pi,k+1 = pi,k + αk∇̃pi,kJ(pi,k)

To demonstrate the algorithm, we use the baseline parameters shown in Table 1. These
parameters result in an equilibrium with p∗1 = 4.8637 and p∗2 = 3.9384.

A1 A2 a1 a2 b1 b2 c1 c2 λ
4 5 0.7 0.9 0.5 0.3 1.2 0.7 2

Table 1: Differentiated Bertrand demand parameters

In this simple setting, we will show how the algorithm converges to a solution, and how
convergence is affected by various training parameters. First, we note that the algorithm
allows the update size αk to vary with each iteration k. In general, it is beneficial to start
with a relatively high αk and let it decay as k increases, which efficiently trades off the
speed and accuracy of the algorithm. However, care should be taken not to decrease αk

too fast, lest the algorithm become stuck (Sutton and Barto, 2018). A common approach is
exponential decay, which sets:

αk = αe−δk

with the training parameter δ governing the rate of decay.

For the baseline training parameters, we use a baseline learning rate of α = 0.02, a decay
rate δ = 0.02, total simulation draws S = 5 and a total of K = 200 training iterations.
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For each set of training parameters we run the algorithm once. The error of the algorithm’s
learned prices (denoted pK1 and pK2 ) relative to the true equilibrium of p∗1 = 4.8637, p∗2 =

3.9384 are plotted in Figure 1 for a single run of the algorithm under various training pa-
rameters. For Table 2, the algorithm is run 100 times for each set of training parameters,
and the mean and standard deviation of the final training error are compared.

Parameter set µ(pK1 − p∗1) µ(pK2 − p∗2) σ(pK1 − p∗1) σ(pK2 − p∗2)

Baseline -0.0064 -0.0012 0.0274 0.0291
More simulation draws, S = 100 -0.0017 -0.0011 0.0073 0.0055
Lower training rate, α = 0.01 -0.0857 -0.0448 0.0298 0.0264
Faster decay rate, δ = 0.03 -0.0159 -0.0129 0.0346 0.0289
High initial price, pinit = 6 0.0030 0.0065 0.0293 0.0268
Higher Poisson rate λ = 6 -2.7739e-03 2.1896e-05 0.0350 0.0324

Table 2: Performance of various training parameter sets over 100 runs

With the baseline parameters, the stochastic nature of the algorithm is evident, as the prices
converge neither smoothly nor monotonically towards the true equilibrium. Both increasing
the simulation draws and reducing the training rate have the effect of lowering the variance of
the algorithm, though the latter comes at the expense of slower training in terms of iterations.
The increased simulation draws also result in a lower variance in the final training error.11

A faster decay rate also appears to stabilize the training faster, but results in a much worse
performance on average, suggesting the decay is too fast and causes the algorithm to get
stuck before converging. When the initial price is set above the true equilibrium rather than
above, the error tends to be positive rather than negative, suggesting the algorithm retains
some path-dependence from the initial guess.

In addition to changing the training parameters, we can also check what happens when we
alter the model parameter λ, the Poisson arrival rate of consumers. As shown before, this
has no effect on the true equilibrium prices, but does affect the performance of the algorithm,
increasing both the rate of learning and the variance of the gradient. In practice, this may
mean that the optimal training parameters are dependent on the properties of the demand
system.

Finally, given that the algorithm trains on market outcomes, it is possible that changes in
the competitiveness of each firm may affect the performance of the algorithm, since a less

11As described in Section A.3 of the online appendix, we can reduce the variance of the gradient by
subtracting the expected profit from the realized profit weight. The modified gradient is:
∇̃pi,k

J(pi,k) =
1
S

∑S
s=1

[
qsi +∇pi,k

log g(qsi |pi,k, pj,k)[
(
(pi,k − ci)q

s
i

)
−
(
pi,k − ci)λ̃(pi,k, pj,k)

)
]
]
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(a) Baseline
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(b) More simulation draws, S = 100
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(c) Lower training rate, α = 0.01
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(d) Faster decay rate, δ = 0.03
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(e) High initial price, pinit = 6
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(f) Higher Poisson rate λ = 6

Figure 1: Effect of training parameters, single training run
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competitive firm sees less demand and may thus learn more slowly, and a higher demand
firm may learn faster but with higher variance, both in accordance with the pattern shown
in subfigure 1f and the scenario with λ = 6 in Table 2.

In Figure 2, the algorithm is run on a 21 by 21 grid of different costs for each firm, with 100
runs of the algorithm for each cell in the grid. The training parameters used for this figure
are K = 200, α = 0.02, δ = 0.02, S = 100 and pinit = 1. The range of costs considered
is chosen such that equilibrium firm quantities for one of the two firms approaches 0 when
their cost is maximal and the rival’s cost is minimal, as can be seen in subfigures 2a and 2b.

Looking at the mean absolute error, we see that when costs are such that a firm’s equilibrium
demand is low, the final error is larger on average. This suggests a slower rate of learning
which fails to converge in the K = 200 iterations. On the other hand, the variance of the
training error is increasing in the firm’s equilibrium demand, which is consistent with faster
but higher variance learning.

The main takeaways from this simplified exercise are that:

1. Given appropriate parameters, convergence appears robust, although some level of
error in the final result is likely.

2. The optimal set of training parameters is specific to the characteristics of the demand
faced by each firm.

3. Certain parameters are more harmful than others when chosen poorly. This is partic-
ularly true for the decay parameter.

Because of these observations, the algorithm used in the counterfactual uses conservative
parameters, favoring (i) a slower learning rate, (ii) a higher count of simulation draws,
leveraging the power of parallel computing, and (iii) foregoing decay in the learning rate
altogether, to avoid any risk of the algorithm getting stuck. The following sections delve
into the empirical setting of micromobility platforms, before returning to the application of
this algorithm in Section 6.
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(a) Firm 1 equilibrium quantity
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(b) Firm 2 equilibrium quantity
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(c) Firm 1 mean absolute error
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(d) Firm 2 mean absolute error
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(e) Firm 1 error std. deviation
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(f) Firm 2 error std. deviation

Figure 2: Algorithm performance over grid of costs, 100 runs per cell

Figure 3: Errors are the difference between true equilibrium prices and the price obtained by the algorithm
after K = 200 iterations for each run.
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3 Empirical setting and Data

3.1 Micromobility in Washington, D.C.

Dockless vehicle sharing platforms rent out fleets of personal mobility vehicles (usually elec-
trically powered kick scooters or bicycles), variously referred to as ”micro-mobility” or ”dock-
less vehicles”, to contrast with station-based bikesharing systems. Users on these platforms
can view available vehicles on a mobile application and unlock them (generally for a fixed
fee), after which they are charged a per-minute fee for their use. This business model was
popularized by the rival platforms Bird and Lime, both of which were founded in 2017. The
industry saw incredibly rapid growth, with 96 million trips nationwide in 2019. This already
eclipsed the more established station-based bikeshare systems, which saw only 40 million
trips in the same year.12 The industry also saw numerous firms enter the market, including
the two major rideshare platforms Lyft and Uber. The latter operated the Jump brand of
scooters and bikes during the time period under study.

In Washington, D.C., the District Department of Transportation (DDOT) regulates this
market by issuing permits to operate in the market. The price controls I study are specified in
the terms and conditions of operation, which stipulate that firms “shall not charge customers
at a more expensive rate for rental of dockless vehicles, or impose an additional fee, regardless
of the trip origin and destination” (DDOT, 2019, DDOT, 2020) which effectively restricts
firms from deploying more sophisticated price menus which vary directly with trip origin and
destination. The same provision makes exceptions for “incentives for active rebalancing of
dockless vehicles.” However, there is no clear definition of what would constitute incentives
for rebalancing as opposed to a more flexible pricing system, which may also be extracting
greater rents. I thus take the requirement of price uniformity to be total in the status quo,
and relax this requirement in the counterfactual exercise.

The operating permits issued by DDOT also set restrictions on fleet sizes and requirements
on scooter deployment. In 2019, DDOT issued permits to a total of eight firms, with fleet size
limits under one thousand per operator and vehicle type. It is likely that relaxing capacity
restrictions would reduce the importance of pricing efficiency, since supply will be generally
more abundant. However, Erkan, Stamatopoulos, Agarwal, and Muthuraman (2022) provide
empirical and theoretical evidence that firms over-provision capacity, which may justify such
capacity restrictions. There may also be negative externalities from vehicle deployment, due

12https://nacto.org/wp-content/uploads/2020/08/2020bikesharesnapshot.pdf
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to the sidewalk space they take up, but the cost of this externality has not been quantified.
I thus take the capacity restrictions as given in this paper.

The regulations also require minimum deployments of vehicles in each of the city’s eight
wards in the morning of every day. The 2019 regulations require a minimum of six vehicles
in each ward (DDOT, 2019), while the 2020 regulations (DDOT, 2020) require a minimum of
20. In addition, the 2020 regulations require a minimum of 400 vehicles in prescribed “Equity
Emphasis Areas”, as well as no more than 1,000 vehicles in the Central Business District.
However, the small fleet sizes (see Table 3) at the time the regulation came into force appear
incompatible with these regulations, so they were unlikely to have been enforced. Non-
enforcement was evident during the onset of the COVID-19 pandemic, when the regulator
planned to downsize the number of permitted firms from eight down to four. From the
author’s own continued data collection, all firms were able to continue operating throughout
the year.13

3.2 Data

As part of the conditions of operating in Washington D.C., firms are required to publish
an API disclosing real-time GPS information on each of their available vehicles. I collected
this data at minute-level frequency and use the time period from November 26th, 2019,
and March 8th, 2020.14 Certain firms included persistent vehicle identifiers in their APIs,
which was used to reconstruct vehicle trips by observing the disappearance of a vehicle in
one location and its reappearance in another location at a later time. These vehicle trips
were then filtered to remove trips that seemed too short, too long, or whose implied speed
exceeded the capabilities of the vehicles. The average number, distance, and price of the
trips for the relevant firms can be found in Table 3.

To complement the micromobility data, I also use the Transportation Planning Board (TPB)
Regional Travel Survey of 2017/2018. Respondents were asked to log all their trips in the
24 hours preceding their response. The raw trip data includes the origin and destination, as
well as the start and end times. The TPB reports origins and destinations in terms of Traffic
Analysis Zones (TAZ), which aggregate census blocks. For tractability of the estimation
and counterfactual computation, I further aggregate TAZs into a grid of 22 cells covering

13See: https://www.washingtonpost.com/transportation/2020/02/27/lime-bird-bolt-razor-
lose-appeals-operate-scooters-dc/

14The data collection was continued for most of 2020 and 2021, but the shorter time period was chosen to
avoid the impact of the COVID-19 pandemic.
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Variable Bird Jump_Bike Jump Lime Lyft Razor Skip Spin
Daily trips, mean - - 987.31 - - 15.94 - 469.81
Trip distance, mean - - 1349.71 - - 1676.24 - 1387.75
Trip price, mean - - 3.18 - - 4.95 - 3.9
Total vehicle stock 230 392 338 471 410 284 624 447
Stock of vehicles, Q(0.1) 2 5 3 6 7 5 7 6
Stock of vehicles, median 7 15 12 16 16 11 24 18
Stock of vehicles, Q(0.9) 23 34 34 41 33 23 56 39
|Stock difference|, Q(0.1) 0 0 0 0 0 0 0 0
|Stock difference|, median 0 1 1 1 1 0 1 0
|Stock difference|, Q(0.9) 2 3 2 3 2 0 3 2
Walking distance, Q(0.1) 190.9 170.25 181.41 153.02 161.83 184.08 139.17 165.42
Walking distance, median 389.42 264.38 308.31 258.39 255.21 292.11 254.6 255.25
Walking distance, Q(0.9) 647.78 434.66 543.68 448.21 407.57 430.54 455.52 422.98
Q(n) denotes the n-th quantile. Walking distance in meters. Stock of vehicles is within a grid cell. Stock differences are in absolute terms.

Table 3: Descriptive Statistics

the areas seeing most of the micromobility traffic in Washington, D.C. The resulting grid is
shown in Figure 4.

I also discretize time into 10-minute intervals. This is greater than roughly two-thirds of trip
durations, as seen in Figure A.1 in the online appendix. In the model, it will be assumed that
trips only last for a single one of these intervals, thereby avoiding the additional complications
to the state space of modeling vehicle transit times.

As the trip data can only be reconstructed for a subset of the firms in the market, I comple-
ment it with a time series of the stock of vehicles available in each location, as well as the
difference in stocks at the 10-minute frequency (hereinafter referred to as stock difference
data). As explained later in Section 5.1.3, the stock difference from one period to the next
is informative about trips being taken, and will thus be used in estimating demand-side
parameters.

An additional input to the demand model is the expected walking distance from a consumer
to the nearest vehicle of each firm. To compute this for each time period, I compute the
distance to the nearest vehicle over a finer grid of points (as can be seen in Figure A.2 in
the online appendix), spaced 100 meters apart. I then average this walking distance over
each grid cell. The tenth percentile, median, and ninetieth percentile of the stock, (absolute
value of) stock difference, and walking distance variables are displayed in Table 3.

Finally, to allow the demand model to capture differences in transportation patterns over the
course of the day, I subset the day into four distinct times of day, over which most demand
parameters will vary. As seen in Figure 5, most trips take place between 6 a.m. and 9 p.m.
I thus take four intervals of 3.5 hours each, demarcated by the lines in the figure. This
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Figure 4: Location grid
Note: coloration is added solely for visual contrast.

roughly captures morning, noon, afternoon, and evening patterns of activity. Furthermore,
I limit the data to weekdays only, as weekends have significantly different traffic patterns.
The descriptive statistics in Table 3 reflect these restrictions, with the final panel amounting
to 4,579 periods worth of observations across 8 products (7 firms) and 22 locations.

4 Model

The model consists of a demand process, which specifies arrival rates of consumers for each
trip as a function of the prices and the current distribution of vehicles and a pricing equi-
librium concept between the firms. As explained in the previous section, the model is set in
discrete time with 10-minute intervals indexed by t. I assume that vehicles used for a trip
in period t are available for use again at the destination in period t+1. Space is discretized
into a set of locations ℓ ∈ L. A trip consists of an origin ℓ and destination m. The firms are
denoted f ∈ F .

In addition, each day is divided into times of day h, which capture the major fluctuations in
demand patterns over the course of the day (as described in Section 3.2 above). To simplify
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Figure 5: Density of trip times and discretization of time

dynamics, I assume the times of day evolve stochastically via a Markov process. Concretely,
the hours of day each last 3 and a half hours, or 210 minutes, equivalent to 21 periods t. If
in time t, the current time of day is ht = 1, the morning, there will be a 1

21
chance that the

time of day in the next period t+ 1 will be ht+1 = 2, the noon time of day, and a 20
21

chance
that the time of day remains the same at ht+1 = 1. This formulation leads to mean durations
of each time of day of 210 minutes, but avoids needing to condition the firm’s problem on
the more granular time index t. If the current time period is ht = 4, the evening, then the
time of day can transition to ht+1 = h̄, the end of day, which is an absorbing state with no
demand activity.

4.1 Demand

At the beginning of each t, each firm’s prices for each trip pℓ,m,f,t and the expected walking
distance to the nearest vehicle in each location E(wℓ,f,t) are observed by consumers.

Then, within period t, the number of consumers desiring a trip (ℓ,m) is given by a Poisson
arrival process λℓ,m,h, which depends on the time of day h. Consumers then choose among
F ∪{0}, where 0 represents the outside option (either an alternative mode of transportation
or no trip at all). It is assumed that consumers exit the market when choosing the outside
option and will not wait for better opportunities to take a scooter. In case of stockouts,
consumers are served on a first-come first-serve basis.15 The utility of each of the inside

15Empirically, I observe very few (less than 1% of observations) possibilities of true stockouts based on
the number of trips taken and the number of remaining vehicles, so this possibility is ignored in the demand
estimation. However, since this fraction depends on firm prices, the possibility of stockouts is explicitly
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choices is given by:

uℓ,m,t,f = γℓ,m,h + ξf − αpℓ,m,f − χE(wℓ,f,t)︸ ︷︷ ︸
δℓ,m,t,f

+ηin + σϵt,f , (5)

where γℓ,m,h captures the utility of the trip from ℓ to m, ξf is a firm-specific utility, pℓ,m,f

is the price of the trip with firm f , E(wℓ,f,t) is the expected walking distance to the nearest
vehicle, ηin is a nesting shock that is common to all the inside choices, and ϵt,f is the
idiosyncratic Type-1 Extreme Value shock. The combined mean utility δℓ,m,h,t,f is common
to all consumers, while the shocks are drawn independently across consumers. Note that the
trip utility parameters γℓ,m,h are indexed by time of day in order to capture changes in the
intensity and direction of traffic flows appropriately over the course of the day.

For tractability of the estimation, the γℓ,m,h are constrained to a simpler specification:

γℓ,m,h = γO,ℓ,h + γD,m,h + γ1,h∆ℓ,m + γ2,h∆
2
ℓ,m

where γO,ℓ,h is the value of a trip with origin ℓ at time of day h, γD,m,h is the value of a trip
with destination m, and ∆ℓ,m is the distance between locations ℓ and m. This constrained
specification is similar to that in Buchholz et al., 2020, wherein the value of a trip relates to
the value of leaving one location for another, as well as the distance of the trip, since other
modes of transport contained in the outside option will generally have a cost proportional
to the distance. Here, I add an additional term for the square of the trip distance, as the
vehicles studied are bikes and scooters, which may be more uncomfortable than other modes
of transportation over long distances.

The specification yields standard nested logit choice probabilities. The choice of firm, con-
ditional on choosing the inside nest is:

P (ℓ,m, t, f |inside) = exp(δℓ,m,t,f/σ)
/∑

g∈F

exp(δℓ,m,t,g/σ)

The probability of choosing the inside nest is:

P (inside) =
(∑

g∈F

exp(δℓ,m,t,g/σ)
)σ/((∑

g∈F

exp(δℓ,m,t,g/σ)
)σ

+ 1
)

Multiplying the arrival rates λℓ,m,h by the choice probabilities yields demand arrival rates

considered in the computation of counterfactual prices, in a similar fashion to Conlon and Mortimer (2013).
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for each firm:
λ̃ℓ,m,t,f = λℓ,m,hP (inside)P (ℓ,m, t, f |inside) (6)

4.2 Supply

I model each firm’s objective as seeking to maximize the discounted present value of its
stream of revenues from each completed trip minus its operational costs of charging and
redeploying vehicles. To do so it commits to both a relocation policy and a pricing policy,
the latter of which can be contingent on both the time of day and possibly the stock of
vehicles in each location.

I assume relocation occurs overnight jointly with the recharging of the vehicle batteries,
and taking account of the firm’s own pricing policy.16 The pricing policy is set in the
morning, taking into account the firm’s optimal relocation policy at the end of the day. As
the relocation policy is held fixed in the counterfactuals, its formal exposition is relegated
to Section A.2. I now focus on the firm’s pricing policy, which will be the subject of the
counterfactuals.

The firm sets a pricing policy pf (Qf , h) which specifies prices pf,ℓ,m for each possible origin-
destination pair (ℓ,m) as a function of the state variables Qf , the firm’s own vector of
vehicle stocks across all locations (thus emulating the surge pricing used by the popular
ridehail platforms), and h, the time of day which indexes demand parameters. Formally, the
firm pricing problem (omitting subscripts f) is:

max
p(Q,h)

∞∑
t=0

βtEq,h|p

[∑
ℓ∈L

∑
m∈L

(pℓ,m(Qt, ht)− cℓ,m)qℓ,m,t (7)

+ 1[ht = h̄](1− β)VR(Qt)
]

s.t.∑
m∈L

qℓ,m,t ≤ Qℓ,t, ∀t, ∀ℓ ∈ L (8)

Qℓ,t+1 = Qℓ,t −
∑
m∈L

qℓ,m,t +
∑
k∈L

qk,ℓ,t (9)

Q0 = Q̌∗
f

h0 = 1

16The Jump data includes both vehicle identifiers and battery levels, allowing me to identify charging
trips, which occur more frequently overnight, during which there is little to no demand.
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The flow payoffs in the above problem simply sum the total profit over all possible origin-
destination pairs, while the expectation operator is taken over the time of day states and
the realized demand for each trip qℓ,m,t. The latter is drawn from a Poisson process with
arrival rate λ̃ℓ,m,t,f (pℓ,m) defined by the demand system in Equation 6. The additional term
1[ht = h̄](1−β)VR(Qt) gives the firm a one-time end of day payoff of VR(Qt) from the firm’s
solution to the relocation problem (defined in Equation A.2 in the online appendix).

Constraint 8 reflects the firm’s capacity constraints, while constraint 9 is a law of motion
capturing the evolution of the firm’s vehicles stocks from the realized trips. The last two
constraints specify initial conditions, where the initial stock Q0 is assumed to be chosen by
the firm optimally according to Equation A.1 in the online appendix. The evolution of the
state variable Qt is thus determined by the initial condition and the realizations of demand
qℓ,m,t.

4.3 Equilibrium

The equilibrium concept is Nash, where all firms simultaneously choose and commit to both
their pricing and relocation policies. The assumption of commitment is reasonable in the
context of transportation platforms, since policies are implemented in software and would
be costly to alter in response to moment-to-moment changes in the state space.

I also assume that firms only observe the state of their own vehicle fleets, rather than that
of competitors. While in principle, the open APIs used for this paper’s data collection could
also be used by firms to observe the state of each others’ fleets, this is a feature unique to
the Washington, D.C. market. In other markets, obtaining such data would require reverse-
engineering the closed APIs of other firms, which presents technical and legal challenges. It
is thus unlikely that firms would invest in pricing policies which condition on the state of
rival fleets, only for use in a single market.

The formal equilibrium conditions are:

1. For each f ∈ F , pf (Q, h)∗ solves Equation 7, taking Q∗
f , p∗−f , and Q∗

−f as given.

2. For each f ∈ F , Q∗
f solves Equation A.1, taking p∗f , p∗−f , and Q∗

−f as given.

The first condition requires that firms solve their pricing problem by committing to a pric-
ing schedule, taking their own relocation strategy and the pricing schedules and relocation
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strategies of their rivals as given. The second condition requires that firms solve their relo-
cation problem, taking their own pricing schedule and the pricing schedules and relocation
strategies of their rivals as given.

We will also want to consider equilibria in which firms are constrained to a simpler pricing
strategy. To model this, let firms be exogenously constrained to a parametric pricing strategy
pθf (Qf , h), with θf ∈ Θf . This could represent a simple two-part tariff as in the status quo,
or a very flexible function approximator such as a neural network which takes the state
variables as inputs. In this case, the equilibrium conditions are slightly modified to include
the restriction on the space of feasible policies:

1. For each f ∈ F , pf (Q, h)∗ solves 7, taking Q∗
f , p∗−f , and Q∗

−f as given, subject to
pf ∈ {pθf : θf ∈ Θf}

2. For each f ∈ F , Q∗
f solves A.1, taking p∗f , p∗−f , and Q∗

−f as given.

This will be referred to as the parametric pricing equilibrium in the following. This
concept bears similarity to the Parametric Policy Iteration algorithm described by Rust,
2000 and implemented by Sweeting, 2013 and Bodéré, 2023, which involves solving a dynamic
programming problem with a parametric approximation to the value function. Whereas the
intent of that algorithm is to ease the researcher’s computational burden while providing a
close approximation to the exact policy, the parametric pricing equilibrium described above
allows for firms themselves to approximate the optimal strategy through a simplified pricing
policy.

5 Estimation

5.1 Methodology

The estimation focuses on the demand model described in Section 4.1. The parameters of this
model include the arrival rates of consumers (λℓ,m,h) and the utility parameters (γ, ξ, α, χ, σ),
referred to as θd for conciseness.

The arrival rates first are calibrated using survey data, and the consumer utility parameters
are then estimated conditional on the calibrated arrival rates using a Generalized Method of
Moments (GMM) estimator. Recall that the data consists of two broad types (see Table 3):
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direct trip data for three firms and stock-difference data for all firms. The full estimation
procedure is described in the following.

5.1.1 Arrival rates

The consumer arrival rates λ are essentially a measure of the non-deterministic market size.
I interpret the market size as the total transportation demand across all modes between each
origin-destination pair, differentiating by time of day.17 To calibrate this measure, I make
use of the TPB travel survey described in Section 3.2. For each origin ℓ and destination m

and time of day h, I group all the matching trips in the survey and sum the sampling weights.
Recall that the time of day discretization results in four 3.5 hour periods corresponding to
morning, midday, afternoon, and evening. To get arrival rates for the 10-minute periods
indexed by t, I rescale the arrival rates down to obtain λ̂ℓ,m,h. In addition, in order to avoid
arrival rates of 0 that can arise due to some trips not being sampled in the survey, the arrival
rates are all smoothed towards the mean, to. Formally:

λℓ,m,h = (
9

10
λ̂ℓ,m,h +

1

10
λ̄h)

1

21

where λ̄h =
∑

ℓ∈L
∑

m∈L
λ̂ℓ,m,h

L2 .

5.1.2 Trip-level moments

The trip data consists of observations of qℓ,m,f,t, which is the quantity of trips taken from ℓ

to m with firm f ’s vehicles at a time t. This is accompanied by pℓ,m,f,t, the price of the trip,
ht the time of day, and E(wℓ,f,t), the expected walking distance to the nearest vehicle of the
firm.

From the demand model in Section 4.1, I can compute the Poisson arrival rate λ̃ℓ,m,f,t(pℓ,m,f,t, ht,E(wℓ,f,t); θd)

of qℓ,m,f,t, conditional on the information above and the demand parameters θd. The Poisson
arrival rate corresponds to the mean number of arrivals, so the first set of moments ĝ1(θd)

is constructed to match these as follows:

ĝ1,ℓ,m,f (θd) =
1

T

T∑
t=1

qℓ,m,f,t − λ̃ℓ,m,f,t(θd) (10)

17This choice results in a very large share of the outside option. The nested logit specification is thus
important to break the IIA property with respect to the outside share.
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Let ĝ1(θd) refer to the moments above stacked over ℓ, m, and f .

5.1.3 Stock-difference moments

To construct the stock difference moments, first recall the law of motion in 9 of a firm’s stock
levels, rearraged in terms of the stock difference variable:

∆Qℓ,f,t = Qℓ,f,t+1 −Qℓ,f,t =
∑
k∈L

qk,ℓ,f,t︸ ︷︷ ︸
inflows

−
∑
m∈L

qℓ,m,f,t︸ ︷︷ ︸
outflows

where the qℓ,m,f,t are in this case unobserved, but whose arrival rates are given by the
respective λ̃ℓ,m,f,t(θd). The mean of the stock-difference variable is thus given by:

E[∆Qℓ,f,t] =
∑
k∈L

λ̃k,ℓ,f,t(θd)−
∑
m∈L

λ̃ℓ,m,f,t(θd) ≡ µℓ,f,t(θd)

The second set of moments ĝ2(θd) is constructed to match the mean of the stock difference:

ĝ2,ℓ,f (θd) =
1

T

T∑
t=1

∆Qℓ,f,t − µℓ,f,t(θd) (11)

The crucial information in the stock difference data lies, however, in the covariances between
the various stock differences. 18

Intuitively, the (negative) covariance in the stock evolution between two different locations
will be caused by the traffic between the two locations. For example, suppose we have
locations A, B, and C, and observe the stock of vehicles in each location. Suppose there are
many vehicle trips between A and B, and between B and C, but very few between A and
C, as illustrated in Figure 6. Next, we can examine the relationship in the stock differences
across locations. A trip from A to B will cause a reduction in the stock in A and an increase
in the stock in B, same as for any other pair of locations. Thus, the more trips between
a pair of locations, the stronger the (negative) covariance in the stock fluctuations between

18Formally, the stock difference variable has a Skellam distribution, since it is effectively the difference
between the two Poisson distributions which aggregate the inflows and outflows. Though this could be
used to form a likelihood on a single stock difference time series, there is no known closed-form for the joint
distribution of correlated Skellam processes, which is why the method of moments is preferred to a maximum
likelihood estimator.
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A B

C

Figure 6: Illustration of covariances in stock differences

them will be. In this stylized example, we would expect to see a high covariance in the stock
fluctuations between A and B and between B and C, but a low covariance in the stock
fluctuations between A and C.

Formally, we can derive the covariance between the stock difference in two locations as:

Cov(∆Qℓ,f,t,∆Qm,f,t; θd) = −
(
λ̃ℓ,m,f,t(θd) + λ̃m,ℓ,f,t(θd)

)
, ℓ ̸= m

The third set of moments ĝ3(θd) is constructed to match the uncentered second moment of
the stock difference across different locations:

ĝ3,ℓ,m,f (θd) =
1

T

T∑
t=1

∆Qℓ,f,t∆Qm,f,t−
(
Cov(∆Qℓ,f,t,∆Qm,f,t; θd)+µℓ,f,t(θd)µm,f,t(θd)

)
, ℓ ̸= m

(12)

Lastly, recall that the trip data were cleaned to remove erroneous trips, which are likely
caused by errors in the GPS data. The stock difference data is thus also likely to be polluted
by the same GPS errors. To allow for this possibility, I assume that for each vehicle in a
location ℓ, there is some arrival rate of a GPS error, which either adds 1 to or subtracts 1
from the stock difference variable ∆Qℓ. Thus, the variance of the stock difference variable
within a location is inflated by the GPS error, proportionately to the level of the current
stock:

V ar(∆Qℓ,f,t; θd, λGPS) =
∑

k∈L\{ℓ}

λ̃k,ℓ,f,t(θd) +
∑

m∈L\{ℓ}

λ̃ℓ,m,f,t(θd) + 2λGPSQℓ,f,t

The fourth and final set of moments ĝ4(θd, λGPS) is constructed to match the uncentered
second moment of the stock difference within the same location:

ĝ4(θd, λGPS) =
1

T

T∑
t=1

∆Q2
ℓ,f,t −

(
V ar(∆Qℓ,f,t; θd, λGPS) + µℓ,f,t(θd)

2
)

(13)
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5.1.4 Estimator details

The implementation of the GMM estimator follows Newey and McFadden (1994). The four
sets of moments are stacked together19 as follows:

ĝ(θd, λGPS) =


ĝ1(θd)

ĝ2(θd)

ĝ3(θd)

ĝ4(θd, λGPS)


The GMM estimator is then given by:

(θ̂d, λ̂GPS) = argmin
θd,λGPS

ĝ(θd, λGPS)
′Ψ̂ĝ(θd, λGPS) (14)

To increase efficiency, a two-step estimator is used, where in the first step Ψ̂ = I, and in the
second step, the Ψ̂ is chosen as the efficient weighting matrix, again according to Newey and
McFadden (1994). The computation of standard errors follows the same reference.

5.1.5 Identification

The description of the moments above constructively describes how individual choice prob-
abilities can be inferred from information on the stock of vehicles. This section further
discusses how these choice probabilities identify the key parameters of the consumer utility
function.

The price sensitivity parameter α is identified from the restriction of firm prices to a simple
two-part tariff and from the assumption that the taste parameters for each firm ξf does not
vary with trip distance. The fact that the majority of the firms all used scooters made by the
same firm Ninebot, and that many initially used the same model, the Ninebot ES2, supports
this assumption. Holding fixed the supply of each firm’s vehicles, a firm with a lower price
per mile will become relatively more attractive to consumers seeking longer rides. Formally,
suppose we compare the choice probailities of firms f and g across trips A ≡ (ℓ,m) and
B ≡ (ℓ′,m′). Based on the formulation of utility in 5, we can write the log ratio of choice
probabilities of each trip as:

19There are 3∗(22)2 = 1452 moments in the first set, 8∗22 = 176 moments in the second set, 8∗(21∗22)/2 =
1848 in the third set, and 8 ∗ 22 = 176 in the fourth set, for a total of 3,652 moments.
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log
P (A, f)

P (A, g)
= uA,f − uA,g = ξf − ξg + α(pA,f − pA,g)

log
P (B, f)

P (B, g)
= uB,f − uB,g = ξf − ξg + α(pB,f − pB,g)

The difference in difference of choice probabilities is then directly given by the difference in
difference of the prices:

log
(P (A, f)

P (A, g)

/P (B, f)

P (B, g)

)
= α

(
(pA,f − pB,f )− (pA,g − pB,g)

)
(15)

Under the two-part tariff, this difference-in-difference of prices is a direct function of the
differences in the price per mile and the differences in distances, which is naturally exogenous.
The only remaining concern is whether the price per mile is correlated with the firm-specific
utility ξf . Since firms make use of a two-part tariff, it is simpler for the firm to use the fixed
part of the tariff to extract consumer utility from ξf , and that differences in the variable
component can be attributed to differences in costs. We can thus identify α under this
pricing regime.

The sensitivity to walking distance χ is identified from variation in the stock of vehicles.
Implicitly this relies on the assumption that the idiosyncratic shocks ϵt,f are not autocorre-
lated across time, so that variation in the vehicle stock due to past demand can be taken as
exogenous. The trip utilities γ act as a residual, and are identified from the overall size of
the inside share for each combination of origin, destination, and time of day. This relies on
the survey data (see Section 3.2) to accurately pin down the total potential market.

5.2 Results

In the following, I briefly present the parameter estimates of the demand system and compare
them where possible to other studies.

Table 4 summarizes the key parameter estimates. As the trip origin and destination fixed
effects are too numerous to list directly, the interquartile ranges are reported instead.20

20Though the standard errors for these parameters are not reported, it is worth noting that over 90% of
parameters are precisely estimated with t-statistics over 2.
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Transforming these into dollar equivalents, the interquartile range varies between $3 and $5,
which is significant when considering that trip prices fall within a similar range.

Parameter Morning Midday Afternoon Evening
Trip distance (km): γ̂1 0.2352 0.2697 0.5796 0.3974

(0.1446) (0.1700) (0.0719) (0.0647)
Trip distance2 (km2): γ̂2 -0.0984 -0.1620 -0.1824 -0.1222

(0.0313) (0.0402) (0.0171) (0.0121)
Trip origin IQR: γ̂O 0.8553 1.1922 1.2435 1.1140
Trip destination IQR: γ̂D 1.1975 0.9993 0.9082 1.5020
Price ($): α̂ -0.3034 (0.0155)
Walking distance (m): χ̂ -0.0149 (0.0005)
GPS error rate: λ̂GPS 0.0362 (0.0170)
Nesting parameter: σ̂ 0.4283 (0.0002)

Table 4: Key parameter estimates
IQR: interquartile range
Note: Standard errors in parentheses.

The trip distance valuation is presented in Figure 7, which reports the trip value over different
distances, holding all other factors fixed. In all cases, the utility is concave in distance and
the estimates imply that trip distance quickly decreases utility after a few kilometers. It is
also worth noting that longer trips are more desirable later in the day.

To assess the estimated trade-off between price and walking distance to the nearest vehicle, I
compare the relative magnitudes of α and χ against two other recent studies on ride-sharing
platforms, shown in Table 5. The first is Buchholz et al. (2020), who use data from an
auction-based rideshare platform in Prague to estimate the trade-off between waiting time
and price. The second is Rosaia (2020), who uses data from Uber and Lyft’s operations in
New York City to estimate a demand model with parameters varying according to the ride
length.

I transform my estimate of χ, the disutility of an additional 1 meter of expected walking
distance, into a disutility of 1 minute of walking, which is approximately 85 meters at the
average human walking speed. My estimates of the trade-off are in line with those of Rosaia
(2020) for short trips, though both are far higher than in Buchholz et al. (2020). Note,
however, that there are significant differences in local incomes of these studies which may
explain some of the gap. The average income in Prague is approximately 21 thousand USD21,
while the median incomes in Washington D.C., and New York City are approximately 88

21https://www.czso.cz/csu/czso/labour_and_earnings_ekon
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Figure 7: Value of trip distance

thousand USD22 and 68 thousand USD23, respectively.

Value
WTP for 1 minute walk 4.17 $
Rosaia (2021) ( ≤ 15 min) 7.79 $
Rosaia (2021) (30-35 min) 0.81 $
Buchholz et al. (2020) 0.22 $

Table 5: Comparison of time-price trade-off
Note: 1 minute walking time is equivalent to 85 meters

To further assess the estimated parameters, it is useful to examine the implied price elastic-
ities. As there are a large number of effective products and prices, I present three different
average elasticities with different weighting schemes in Table 6 and compare them with recent
studies on rideshare platforms.

The unweighted average is a simple average across all possible trips, across all time periods
in the data. The market size weighting uses the λ parameters calibrated from the travel
survey. Finally, the trip weighting uses actual trips completed (for the 3 firms with trip
data available). While this last measure yields an average elasticity below 1, which in
principle is incompatible with firm profit maximization, this is in line with other studies on

22https://fred.stlouisfed.org/series/MEHOINUSNYA672N
23https://fred.stlouisfed.org/series/MEHOINUSDCA672N

33

https://fred.stlouisfed.org/series/MEHOINUSNYA672N
https://fred.stlouisfed.org/series/MEHOINUSDCA672N


transportation platforms, in particular Cohen et al. (2016), who find even lower estimated
elasticities. This pattern may reflect the incentives of such firms to grow faster at the cost of
short-run profit, in order to attract venture capital from investors. In order to deal with this
fact, the counterfactuals also re-compute the optimal two-part tariffs under the objective of
short-run profit maximization, to create a more level ground for comparison with the more
sophisticated prices. Overall, the average elasticities appear reasonable and are contained
within the range of other studies. It is worth noting that Buchholz et al. (2020) report bid-
level elasticities on an auction platform with inter-driver competition which may account for
the much larger elasticities.

Elasticity
Unweighted -2.51
Market size weighted -2.05
Trip weighted -0.74
Rosaia (2021) ( ≤ 15 min) -0.55
Rosaia (2021) (30-35 min) -1.08
Buchholz et al. (2020) -4.37
Cohen et al. (2016), Overall -0.55
Cohen et al. (2016), Los Angeles -0.33

Table 6: Comparison of estimated average price elasticities

6 Counterfactuals

The objective of the counterfactuals is to evaluate the policy limiting pricing flexibility in
Washington D.C. as described in Section 3.1. To this end, I re-compute the pricing equi-
librium while allowing firms complete flexibility in setting prices for each origin-destination
pair (ℓ,m) and each time of day h separately, a total of 1,936 prices for each of the 8 firms.
Because of the high-dimensionality of the price schedule, I introduce a stochastic gradient
descent algorithm based on policy gradient algorithms popular in the reinforcement learning
literature.24

6.1 Methodology

Before introducing the objective function used to compute counterfactual prices, I begin with
a few simplifying assumptions.

24See Sutton and Barto (2018) for an overview.
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Firstly, the relocation problem is not solved for in the counterfactual, due to the added
computational burden it would impose. However, since firms could only do better by also re-
solving the relocation problem, the counterfactual results can be interpreted as a conservative
lower bound on the efficiency gains. I thus take the status-quo relocation policy Q̌∗

f as fixed,
setting it equal to the average distribution of vehicles in the morning time for each firm:

Q̌∗
f =

1∑T
t=1 1[ht = 1]

T∑
t=1

Qf,t1[ht = 1], ∀f ∈ F (16)

Second, I ignore the costs of relocation by setting the relocation cost matrix Cr to 0. This is
justified by the fact that vehicles must eventually be charged anyways, so that the relocation
is given “for free” together with the charging. I then model the cost of charging as part of
the trip marginal cost cℓ,m, proportionately to the battery depletion. For the calibration, I
assume a cost of recharge of $4, which is roughly in line with the rates offered by Lime for
charging vehicles, as seen in Figure A.3 of the online appendix. I then use a conservative
range estimate of 10 kilometers, yielding a cost per-kilometer of 40 cents.25

I now focus on the simplified firm pricing problem without the relocation component:

max
pf (Qf ,h)

∞∑
t=0

βtEqf ,h|pf

[
1[ht ̸= h̄]

∑
ℓ∈L

∑
m∈L

(pℓ,m,θf (Qf,t, ht)− cℓ,m,f )qℓ,m,f,t

]
(17)

where the capacity constraint is implicitly accounted for in the distribution of the demand
variable q. Let J(pf ) denote the objective function of the problem. This problem is nearly
identical to the general problem in Equation 1 in Section 2, with the only change being that
M = L. That is, the types of demand are trips of different origins and destinations sharing
a common space of locations, and capacity constraints are defined at the origin level.

Because of the cost calibration and the emerging nature of the market (with most firms
being venture capital backed startups), the assumption of firm profit maximization may not
be met under the prices charged by firms in the status quo. I thus re-compute the profit-
maximizing equilibrium under the calibrated costs, and compare the equilibria where all
firms symmetrically follow one of the three following pricing policies:

1. Two-part tariff pℓ,m,f (Qf , h) = θf,1 + θf,2∆ℓ,m, where ∆ℓ,m is trip distance.
25Tests of the Ninebot ES2, a popular electric scooter that was initially used by many of the firms in

question, yielded range estimates of 16 kilometers. The conservative estimate allows for some deterioration
of battery life.
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2. Flexible, stock invariant prices pℓ,m,f (Qf , h) = θf,ℓ,m,h

3. Flexible, stock responsive prices pℓ,m,f (Qf , h) = pℓ,m,h(Qf ; θf ) represented by a neural
network with parameters θf

The re-computed two-part tariffs are compared with the real two-part tariffs in Table A.2
in the online appendix. The second pricing policy allows prices to respond dynamically to
changes in the stock of vehicles, similarly to the “surge pricing” algorithms implemented by
many rideshare platforms. Note that the stock invariant pricing still allows prices to vary
across time of day, so that they can still respond to the predictable changes in the patterns
of demand over the course of the day.

6.2 Results

In the following, I focus on the change in profits, consumer surplus, and quantities (rides
taken) across the three pricing policies. The overall outcomes at the daily level are given in
Table 7.

Two-Part Flexible, stock invariant Flexible, stock responsive
Profits $18343.94 $24544.06 $24257.04

- +33.80% +32.23%
Quantities 9714.36 13675.66 13496.09

- +40.78% +38.93%
Consumer Surplus - +$14711.72 +$14034.09

Table 7: Outcomes under alternative price equilibria, scaled to daily levels
Note: since consumer surplus has a level normalization, the baseline is not reported.

Profits, quantities and consumer surplus are all substantially increased under the more flex-
ible pricing regimes. Notably, the increase in consumer surplus is more than double the
increase in profits (equivalent to 80% of firm profits under two-part tariffs), implying that
the efficiency gains are mostly reaped by consumers, which may speak to the high degree
of competition between the eight firms in this market. This is consistent with results on
third-degree price discrimination under competition (such as Holmes, 1989), showing price
discrimination is consumer welfare enhancing only if quantities are increased.

Notice, however, that the outcomes under the two flexible pricing regimes are nearly identical
to each other. This is due to the relatively stable nature of vehicle stocks in this empirical
setting, so that the incentive to respond to changes in the stocks occurs relatively rarely.
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Figure 8: Daily outcomes: Flexible prices vs. two-part tariffs
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Furthermore, the average stocks by location, time of day, and firm strongly coincide across
the two pricing regimes, as shown in Figure A.5. In addition, conditional on the initial
vehicle distribution, a firm’s prices charged under the two regimes for the same trip are also
very closely correlated (see the example for Jump in Figure A.6). This suggests that this
form of “surge pricing” has a limited role to play in this environment, possibly due to the
lack of aggregate shocks in the model. The fact that the stock responsive prices actually
perform worse despite being more flexible is attributable to some level of error inherent in
the neural networks used for approximation. For the rest of this section, I thus focus on the
flexible, but stock invariant prices.

Recall that the uniform price mandate mandate effectively creates cross-subsidization across
groups of consumers. In the context of transportation, this may result in certain areas facing
higher prices or lower vehicle availability of vehicles when the pricing restrictions are lifted.
To evaluate this, the comparison of outcomes under flexible prices and two-part tariffs are
decomposed spatially by either trip origins or destinations in Figure 8.
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Figure 9: Flexible prices vs. two-part tariffs: vehicle availability

It is immediately clear that the changes in all three outcomes are highly concentrated in
the downtown areas, particularly the central business district, as well as in the Georgetown
University campus. The changes in vehicle availability shown in Figure 9 reflect the same
pattern, suggesting that the flexible prices allow the stock of vehicles to be better managed,
so that the increase in vehicle availability (which is analogous to an increase in product
quality) explain the increases in consumer welfare, part of which is captured by the firms as
increased profits.
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Figure 10: Quantity-weighted changes in cross-location prices

Note: Prices are weighted by the cross-location trip quantities (44% of all trips) under two-part tariffs.

Crucially, these increases in consumer welfare in downtown come at a fairly modest cost to
the consumer welfare of the peripheral areas, despite significant decreases in the availability
of vehicles. This can be explained by the change in cross-location prices depicted in Figure
10: prices for trips originating in the peripheral areas but heading elsewhere are lowered
or only modestly increased. This acts as a countervailing effect to the reduction in supply,
which addresses some of the policymakers’ concern with equity of access to transportation.

To further analyze the distributional consequences of the policy, I regress the average welfare
changes for each trip against the household income levels (in tens of thousands of dollars)
for those same trips according to the Regional Travel Survey (see Section 3.2), as well as
the trip’s distance traveled away from the center of the city, taken to be the White House
(the eleventh cell in the grid in Figure 4). The results, presented in Table 8, show a very
clear relation between the welfare effect of the price control and both income and distances.
However as shown in Figure 11a the relationship with income is U-shaped, so that the
relaxation of the price control policy benefits riders at both the low- and high-end of the
income range. The redistributive effects of the price controls are neither strictly progressive
nor regressive. Instead, the price controls appear to mainly benefit riders going away from
the city center (see Figure 11b), since they are reducing the vehicle supply in the most
valuable areas. Thus, much like the uniform prices charged in New York City subways, the
price controls mainly act as a subsidy to the peripheral areas, without achieving any clearly

39



progressive redistribution.

Coef. Std. Error t P> |t| [0.025 0.975]
Intercept 1.7253 0.668 2.583 0.010 0.412 3.038
Income -0.2194 0.080 -2.731 0.007 -0.377 -0.061
Income Squared 0.0067 0.002 2.914 0.004 0.002 0.011
Distance from center -0.2653 0.065 -4.101 0.000 -0.392 -0.138

Table 8: Regression of average welfare change

One caveat of these results are the assumption which holds the initial distribution of vehicles
fixed across the counterfactuals. While this is indeed a strong assumption, it can be justified
under the current policies which regulate the initial distribution of vehicles (see Section 3).
These regulations would appear to suffice in maintaining sufficient vehicle availability across
locations, while the uniform pricing regulation may be dispensed with to allow the system
to better maintain the optimal balance of vehicles. From this perspective, the flexible prices
may actually complement regulations on the distribution of vehicles, as they can maintain
the socially desirable distribution of vehicles (mandated by the regulator) at a lower cost by
reducing the amount of manual relocation required.
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Figure 11: Decomposing welfare changes by income and distance
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7 Conclusion

Price controls have a long history in transportation policy, ostensibly with the objective of
effecting progressive income redistribution. Yet little is known about the kind of redistribu-
tion these policies actually cause, and how much economic efficiency must be given up by
distorting prices away from their market determined levels. Such policies have seen renewed
interest with the introduction of novel forms of transportation, most notably shared vehicle
platforms. This paper sheds light on this policy question.

I find that the price controls impose a substantial harm on the economic efficiency of the
market. Relaxing the price constraints would yield an increase in industry profits of 34%, or
about $6,000 per day and a consumer surplus increase of $14,700 per day with an increase
in trips taken of about 41%. The redistributive effects of the policy do not appear to be
progressive, but rather act as a subsidy to trips towards the periphery of the city. The
purpose of such a subsidy is unclear, though it may serve as an incentive to reduce urban
density.

In conclusion, this paper underscores the importance of conducting thorough assessments
of price controls within the realm of transportation, considering the significant externali-
ties that can arise from individual riders’ behaviors. Furthermore, the methodological ad-
vancements presented in this study enable the computation of counterfactual prices while
accommodating various constraints on their flexibility. As a result, this novel methodology
holds potential for evaluating the effectiveness of alternative price control measures not only
within transportation but also in broader contexts. By shedding light on the complexities
surrounding price controls, this research contributes to a more comprehensive understanding
of their implications and opens avenues for further exploration and policy refinement.
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Online Appendix to Squeezing more Juice out of Lime:
A Novel High-dimensional Pricing Algorithm
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March 17, 2024

A Additional Content

A.1 Companion Notebook

Section 2.1 is reproduced in a publicly accessible notebook on Google Colab at the following
link: https://colab.research.google.com/drive/1cMJtJbQ1jfibjtclYfh32V4R7poTqqzp?
usp=sharing

This notebook allows anyone to easily reproduce the results in that section of the paper, and
to test the algorithm under alternative parameters.

A.2 Optimal Firm Relocation

The following is a formalization of the firm’s relocation problem, which is not solved for in the
counterfactuals. As discussed in Section 4.2, I model relocation of vehicles (and charging)
as taking place overnight. Here, I further assume that the firm’s relocation policy takes
the form of a fixed initial vehicle distribution in the morning period, denoted Q̌∗

f . This is
motivated by some of the firms’ business model, which adopts a “gig economy” approach to
charging and relocation. This lets workers sign up through a mobile application and find

∗The University of Texas at Austin: richard.faltings@utexas.edu
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vehicles needing to be charged. These firms generally require vehicles that are taken for
charging to be redeployed the following morning at specific locations.1. Given this business
model, a firm would need to commit to its deployment plan so gig workers can plan their
routes more efficiently.

Intuitively, the firm must then choose its initial deployment such as to balance the value
of a particular distribution of vehicles with its expected cost of relocating vehicles. Both
the value and the cost of relocation will depend on its pricing policy, which affects how its
vehicles will move over the course of the day.

Formally, I model the choice of initial deployment Q̌∗
f as:

Q̌∗
f = argmax

Q̌f

EQ̄f |p∗f ,Q̌f

[
Vf (Q̌f , h = 1|p∗f )− C∗(Q̌f , Q̄f |Cr)

]
(A.1)

Where Q̄f is the firm’s vehicle distribution at the end of the day, which is a random variable
whose probability distribution depends both on the pricing policy and the initial vehicle
distribution. Vf (Q̌f , h = 1|p∗f ) is the firm’s value of having the given vehicle distribution at
the start of the day, defined according to the pricing problem in 7. I let C∗(Q′, Q|Cr) be
the cost of optimally relocating vehicles from a distribution Q to a distribution Q′, obtained
from a canonical optimal transport problem with movement cost matrix Cr (also known as
the earth mover’s distance). I also use this to define VR(Q), the firm’s value of ending the
day with a particular vehicle distribution, which will require relocation:

VR(Q) = C∗(Q̌∗
f , Q|Cr) (A.2)

A.3 Counterfactual Algorithm Details

The algorithm described here solves for the parametric pricing equilibrium described in
Section 4.3. For each firm f ∈ F , the algorithm computes the optimal parameters θ∗f for the
firm’s parametric pricing function pθf,P (Qf , h).

In addition to the iteration of the pricing function described in Equation 4 in Section 6.1,
the full algorithm also makes use of a value function to reduce the variance of the estimated
gradients. The intuition is that part of the expected gradient involves the profit of the firm
earned at a particular state (Qf , h), as seen in Equation 2. The profit multiplies the gradient

1See: https://help.bird.co/hc/en-us/articles/360031785072-24-7-Nest-Availability

2



on the probability of the realized demand. Thus the gradient effectively puts a greater weight
on realizations of q with higher profits, making these states more likely. However, since the
profits are non-negative, no states are ever penalized with a negative weight. Instead, we
can change the weighting to an advantage which subtracts the expected profit from the
current state. This has the effect of centering the weights, leading to lower variance in
the estimated gradient and better convergence of the stochastic gradient ascent but does
not modify the optimum of the problem. This closely follows the concept of Generalized
Advantage Estimation of Schulman et al. (2015). The algorithm thus uses a parametric
approximation Vϕf

(Qf , h) for each firm f ∈ F .

Recall Equation 3 describing the stochastic gradient used to update the parametric policy.

∇̃θJ(θ) =
1

S

S∑
s=1

[ Ts∑
t=0

(
βt(∇θpθ)qs,t + (∇θpθ)∇p log g(qs,t|p,Q)︸ ︷︷ ︸

log probability gradient

Ts∑
t=0

((p− c)′qs,t)︸ ︷︷ ︸
≈V (Qt,ht)

)]
(A.3)

The last term to be summed over is essentially the profit obtained from the sequence of
demand starting from time t, which has state Qt and ht. In expectation, this sequence
will yield exactly V (Qt, ht), by definition of the value function itself as the continuation
value from a particular state. However, there is significant variance involved in drawing
the sequences of demand. This is a source of variance in the stochastic gradient itself. As
described in Schulman et al. (2015) we can reduce the simulation variance by subtracting
the value function from the simulated profit sequence. This doesn’t change the value of the
gradient in expectation, but reduces its variance. Intuitively, we can think of the sequence
of profits as a weight, which is multiplied with the log probability gradient. Both of these
are random variables, so the variance of their product will depend on both their covariances
and the product of their expectations. By subtracting the value function from the profit
weights, we reduce the expectation of the weights to 0, which also has the effect of reducing
the variance of their product with the log probability gradient. Given the approximation
Vϕ(Q, h), we can thus use a modified gradient as follows:

∇̂θJ(θ) =
1

S

S∑
s=1

[ Ts∑
t=0

(
βt(∇θpθ)qs,t+(∇θpθ)∇p log g(qs,t|p,Q)

( Ts∑
t=0

((p−c)′qs,t)−Vϕ(Qt, ht)
))]

(A.4)
where we subtract Vϕ(Qt, ht) from the profit sequence

∑Ts

t=0((p− c)′qs,t).

At the same time, given different sequences of profit, we can also update the value function
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approximation itself:

∇̂ϕJ(ϕ) =
1

S

S∑
s=1

[
∇ϕ

( Ts∑
t=0

((p− c)′qs,t)− Vϕ(Qt, ht)
)]

(A.5)

We can now define the full price optimization algorithm used to compute the counterfactual
scenarios in Algorithm 1.

Algorithm 1 Stochastic Gradient Price Optimization
for all f ∈ F do

θ0f ← reasonable random initialization
ϕ0
f ← reasonable random initialization

end for
for k from 1 to K do

for s from 1 to S do
Simulate a full day with prices pθkf∀f ∈ F (until Ts s.t. hTs = h̄) to obtain:
qs,f,t, ∀f ∈ F , t ≤ Ts

end for
for all f ∈ F do

Stochastic policy update: θk+1
f = θkf + αk

θ∇̂θkf
J(θkf )

Stochastic value update: ϕk+1
f = ϕk

f + αk
ϕ∇̂ϕk

f
J(ϕk

f )

end for
end for

The parameters used for the various counterfactuals are displayed in Table A.1. All the value
functions used were approximated by a neural network (one for each firm). Additionally the
parameter update steps are performed with the Adam algorithm from Kingma and Ba (2014),
which further tempers the step size for better convergence and uses a form of momentum to
overcome local optima.

Tuning Parameter Two-Part Tariff Stock Invariant Stock Responsive
Value learning rate αV 5e−4 5e−4 5e−4
Price learning rate αp 1e−3 5e−3 5e−6
Advantage Estimation Parameter λ 0.5 0.5 0.5
Batch size 150 150 150
Parallel threads 30 30 30
Batches 12000 18000 18200
Value neural network structure (22; 64; 64; 64; 1) (22; 64; 64; 64; 1) (22; 64; 64; 64; 1)
Price neural network structure N/A N/A (22; 64; 64; 64; 1936)

Neural networks are all MLPs with structure denoted as inputs, neurons in hidden layers, and outputs
See Schulman et al. (2015) for an explanation of the λ parameter

Table A.1: Training Parameters
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Additionally, the expected walking distance, which enters into the utility (see Equation 5), is
re-computed in the counterfactuals by modeling the expected walking distance as a function
of the number of scooters, with the following functional form:

E(wℓ,f |Qℓ,f ;ω) =
ω1
ℓ,f

ω2
ℓ,fQℓ,f + ω3

ℓ,f

+ ω4
ℓ,f (A.6)

When both vehicles and consumers are uniformly distributed, the above formula can be
analytically derived with ω3

ℓ,f = 0 and ω4
ℓ,f = 0. These additional parameters are added

to account for non-normality, and all four parameters are fitted on the original data. An
example of the fit can be found in Figure A.4.

All computation was carried out on the Texas Advanced Computing Center’s Stampede2
cluster, with runtimes of up to 48 hours depending on the pricing function specification.
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B Additional Tables

Firm Unlock fee (SQ) Minute fee (SQ) Unlock fee (CF) Minute fee (CF)
Bird $1.00 $0.39 $0.95 $0.08
Jump (Bike) $0.00 $0.25 $1.12 $0.07
Jump (Scooter) $0.00 $0.25 $1.11 $0.06
Lime $1.00 $0.24 $1.29 $0.09
Lyft $1.00 $0.24 $1.06 $0.08
Razor $1.00 $0.24 $1.15 $0.05
Skip $1.00 $0.25 $1.22 $0.09
Spin $0.00 $0.29 $1.16 $0.05
SQ: Status-quo. CF: Counterfactual

Table A.2: Two-part tariff comparison
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C Additional Figures
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Figure A.1: CDF of trip durations for Jump scooters

Figure A.2: Fine grid of points used to compute expected walking distances.
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Figure A.3: Charging tasks and rewards for Lime scooters. Dated May 18th, 2020.

Figure A.4: Example of the fitted walking distance function
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Figure A.5: Comparison of average vehicle stocks by firm, location, and hour of day

Figure A.6: Comparison of prices under initial vehicle distribution, Jump
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(a) Two-part tariff, profits over training (b) Two-part tariff, training deltas

(c) Stock invariant prices, profits over training (d) Stock invariant prices, training deltas

(e) Stock responsive prices, profits over training (f) Stock responsive prices, training deltas

Figure A.7: Evolution of profits over training
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